import Exercice from '../../Exercice.js'
import { randint, listeQuestionsToContenuSansNumero, ecritureParentheseSiNegatif, sp, texteCentre } from '../../../modules/outils.js'
import { ajouteChampTexteMathLive } from '../../../modules/interactif/questionMathLive.js'
import { setReponse } from '../../../modules/gestionInteractif.js'
export const titre = 'Déterminer les coordonnées d\'un point avec une translation'
export const interactifReady = true
export const interactifType = 'mathLive'
// Les exports suivants sont optionnels mais au moins la date de publication semble essentielle
export const dateDePublication = '04/03:2022' // La date de publication initiale au format 'jj/mm/aaaa' pour affichage temporaire d'un tag
/**
* Modèle d'exercice très simple pour la course aux nombres
* @author Stéphane Guyon
* Référence
*/
export const uuid = '0dfad'
export const ref = 'can2G14'
export default function TranslationVecteur () {
Exercice.call(this) // Héritage de la classe Exercice()
this.nbQuestions = 1
this.tailleDiaporama = 2
this.formatChampTexte = 'largeur15 inline'
this.nouvelleVersion = function () {
const xA = randint(-5, 5)
const yA = randint(-5, 5)
const ux = randint(-5, 5, 0)
const uy = randint(-5, 5)
const xB = xA + ux
const yB = yA + uy
this.listeQuestions = [` Dans un repère orthonormé, on donne un point $A$ de coordonnées $A\\left(${xA}${sp(1)} ; ${sp(1)} ${yA}\\right)$ et un vecteur $\\vec{u}$ de coordonnées $\\vec{u}\\begin{pmatrix}${ux} \\\\ ${uy}\\end{pmatrix}$.
<br>Les coordonnées du point $B$ image du point $A$ par la translation de vecteur $\\vec{u}$ sont :
${texteCentre(`$B\\Bigg($ ${this.interactif ? ajouteChampTexteMathLive(this, 0, 'largeur10 inline') + sp(2) : sp(5)} ;
${this.interactif ? ajouteChampTexteMathLive(this, 1, 'largeur10 inline') + sp(2) : sp(5)} $\\Bigg)$`)}`]
this.listeCorrections = [`On sait d'après le cours, que si le point $B$ est l'image du point $A$ par la translation de vecteur $\\vec{u}$, alors $\\overrightarrow{AB}=\\vec{u}$ <br>
En appliquant aux données de l'énoncé, on obtient : $\\overrightarrow{AB}\\begin{pmatrix}x_B-${ecritureParentheseSiNegatif(xA)} \\\\ y_B-${ecritureParentheseSiNegatif(yA)}\\end{pmatrix}$<br>
$\\overrightarrow{AB}=\\vec{u}\\iff \\begin{cases}x_B-${ecritureParentheseSiNegatif(xA)}${sp(1)} =${ux}\\\\ ${sp(1)} y_B-${ecritureParentheseSiNegatif(yA)} ${sp(1)}=${uy}\\end{cases}$<br>
D'où: $\\begin{cases}x_B=${xA + ux}${sp(1)} \\\\ ${sp(1)} y_B=${sp(1)}${yA + uy}\\end{cases}$`]
setReponse(this, 0, xB)
setReponse(this, 1, yB)
listeQuestionsToContenuSansNumero(this)
this.canEnonce = ` Dans un repère orthonormé, on donne un point $A$ de coordonnées $A\\left(${xA}${sp(1)}\\;;\\;${sp(1)} ${yA}\\right)$ et un vecteur $\\vec{u}$ de coordonnées $\\vec{u}(${ux}\\;;\\;${uy})$.
<br>
Donner les coordonnées du point $B$ image du point $A$ par la translation de vecteur $\\vec{u}$.
`
this.canReponseACompleter = ''
}
}